Clinical Efficacy of Abana in Angina Pectoris

Mahesh Chandra, M.D., (Med.) Reader,
Arvind Kumar, Lecturer,
Department of Medicine, K.G.’s Medical College, Lucknow.

INTRODUCTION
Ischaemic heart disease is one of mankind’s main killers, particularly in affluent countries. Various pharmacological and surgical measures have been devised to treat this fell disease. As the therapy in most of the cases is life-long, we need a drug, which is effective and safe for long-term use.

Of late, remedies from Ayurveda, the traditional system of medicine, are becoming more and more popular, particularly in India and other countries, because of their safety and efficacy. Further, it is our experience that patients readily comply with the traditional systems of medicine than with allopathy, the modern system of medicine, particularly for long-term treatment.

Abana is one such herbal remedy from the Ayurvedic system. It is claimed to be effective in a variety of cardiac disorders. Its effectiveness on the cardiovascular system is said to be due to its ability to down-grade the beta-receptors.

Various drugs used to treat the anginal syndrome in modern medicine act on a similar principle. The present study was undertaken to assess Abana’s efficacy and safety in stable angina pectoris, when given singly and in combination with other drugs.

COMPOSITION
Each Abana tablet contains:
Exts. Terminalia arjuna (Arjun) 30 mg
Withania somnifera (Ashwagandha) 20 mg
Tinospora cordifolia (Giloe) 10 mg
Nepeta hindostana (Billilotan) 20 mg
Phyllanthus emblica (Amla) 10 mg
Terminalia chebula (Hira) 10 mg
Dashamoola 20 mg
Eclipta alba (Bhrangraj) 10 mg
Glycyrrhiza glabra (Yashtimadhu) 10 mg
Asparagus racemosus (Shatavar) 10 mg
Boerhaavia diffusa (Punarnava) 10 mg
Centella asiatica (Brahmi) 10 mg
Convolvulus pluricaulis (Shankhpushpi) 10 mg
Ocimum sanctum (Tulsi) 10 mg
Nardostachys jatamansi (Jatamansi) 10 mg
Cyperus rotundus (Motha) 5 mg
Acorus calamus (Vach) 5 mg
Embelia ribes (Vidang) 5 mg
Piper longum (Pipali) 10 mg
Carcum copticum (Ajwain) 10 mg
Zingiber officinale (Sunthi) 10 mg
Syzygium aromaticum (Lavang) 5 mg
Celastrus paniculata (Malkangni) 5 mg
Santalum album (Chandan) 5 mg
Elettaria cardamomum (Choti Elaichi) 5 mg
Foeniculum vulgare (Sonf) 5 mg
Rosa damascena (Gulab ka phool) 5 mg
Cinnamomum cassia (Taj) 5 mg
Crocus sativus (Keshar) 2 mg
Shilajeet (Purified) 20 mg
Jaharmohra 10 mg
Shankh bhasma 10 mg
Makardhwaj 10 mg
Abhrak bhasma 5 mg
Pearl pishti (Moti) 5 mg
Agate pishti (Akik) 5 mg
Jade pishti (Yeshab) 5 mg
Ruby pishti (Yakut) 5 mg
Coral pishti (Praval) 5 mg

Processed in Abresham, Onosma brecteatum (Gaozoban), Phyllanthus emblica (Amla), Centella asiatica (Brahmi), Rosa damascena (Gulab ka phool), Nelumbium speciosum (Kamal ka phool), Punica granatum (Anar), Pyrus malus (Seb), Convolvulus pluricaulis (Shankhpushpi), Asparagus racemosus (Shatavar), Aloevera (Ghikanwar), Nepeta hindostana (Billilotan), Ocimum sanctum (Tulsi), Foeniculum vulgare (Sonf), Vetiveria zizanioides (Khas), Daucus carota (Gajar).

MATERIAL AND METHODS
Sixty cases of classical effort angina, the details of which are shown in Table 1, attending the Cardiovascular Medicine Clinic, were selected for the trial.

<table>
<thead>
<tr>
<th>Total No. of patients</th>
<th>Males</th>
<th>Females</th>
<th>Mean age</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>45</td>
<td>15</td>
<td>47.8 ± 6.2 years</td>
</tr>
</tbody>
</table>

Twenty-five of these were already receiving antianginal drugs. After a detailed clinical evaluation for anginal frequency, nitroglycerine (NG) consumption, exercise capacity in the form of walking distance and recording of the standard 12 lead ECG at rest, all the cases were put on Abana, 2 tablets thrice daily, along with any existing treatment. They were followed up for their subjective or objective improvement over 1 month.

RISK FACTORS
Twenty patients were addicted to smoking, 6 had hypertension, 4 had hypercholesterolaemia and 10 were diabetics.

RESULTS
Frequency of Anginal Attacks
The average rate of anginal attacks was reduced from 8.4/week to 4.7/week after starting Abana. The response in individual cases was arbitrarily graded as GOOD for >50% reduction in anginal frequency FAIR for 25 - 50% reduction and POOR if there was less than 25% reduction. How individual cases responded is depicted in Table 2.
Table 2: Showing the response to Abana

<table>
<thead>
<tr>
<th>Response</th>
<th>No. of patients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Fair</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Poor</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>100%</td>
</tr>
</tbody>
</table>

Nitroglycerine Consumption

The number of tablets of nitroglycerine (NG) required per week serves as good index of the response in individual cases. After institution of Abana there was a significant reduction in NG consumption in 50% of cases (i.e., 30 out of 60 cases). The mean NG consumption before and after commencement of Abana is shown in Table 3.

Table 3: Mean nitroglycerine consumption (No. of tablets/week)

<table>
<thead>
<tr>
<th>Before</th>
<th>After Abana</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week</td>
<td>2nd week</td>
</tr>
<tr>
<td>5.6</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Walking Distance

This parameter was also evaluated before and after Abana. There was a significant increase in the walking distance assessed subjectively in 2/3rds of the cases, (i.e. 40 out of 60 cases), after commencement of Abana. In 10 cases, the walking distance increased to more than double.

Reduction of Other Antianginal Drugs

Twenty-five cases were already on other antianginal drugs as shown in Table 4.

Table 4: Showing the other drugs used

<table>
<thead>
<tr>
<th>Drug</th>
<th>No. of patients</th>
<th>Dose range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propranolol</td>
<td>10</td>
<td>80 - 160 mg/day</td>
</tr>
<tr>
<td>Verapamil</td>
<td>6</td>
<td>120 - 160 mg/day</td>
</tr>
<tr>
<td>Oxyfedrine</td>
<td>9</td>
<td>24 - 48 mg/day</td>
</tr>
</tbody>
</table>

Abana was added to the existing treatment, which was continued in these 25 cases. When a significant improvement was observed, an attempt was made to titrate the doses of the other drugs downwards and see if they could be reduced or discontinued. In 10 out of the 25 cases, the dosages of the other drugs could be significantly reduced and their requirements decreased after addition of Abana.

SIDE EFFECTS

No significant side effects were observed in any of the cases. The drug was tolerated very well by all.

CONCLUSION

Abana therefore appears to be a useful adjunct in the treatment of angina pectoris and brings about a significant reduction in anginal attacks, nitroglycerine consumption and increase in the walking distances. Abana can be safely combined with any existing antianginal therapy. Abana is tolerated very well without any significant side effects, which is a distinct advantage.