Clinical Trial

Evaluation of Efficacy and Safety of Talekt Syrup in Atopic Dermatitis

UMA AGARWAL, PRASAD S.R., MITRA S.K.

ABSTRACT

Atopic dermatitis is a commonly encountered skin inflammation with variable etiology and clinical presentation. Available treatment options for management have a major drawback of failure in preventing high recurrence. This study was planned to evaluate the clinical efficacy and safety of Talekt syrup in atopic dermatitis.

This was an open, non-comparative clinical trial. A total of 100 patients, who were refractory to conventional treatment and who were willing to give informed consent, were included in the study. Pregnant and lactating women, children below 14 years of age, patients with severe systemic illness, and patients with genetic disorders were excluded from the study. At the initial visit, a detailed medical history, with special emphasis on family history of atopy, history of known contacts and treatment history was obtained from all patients. Duration of symptoms, onset status, recurrence, anatomical distribution, initiation of lesion, pain, and presence of any additional signs was noted. The details of present episode were recorded in terms of onset, progression of lesion, relieving factors and seasonal exacerbation. The local examination included details of the pattern and morphology of the lesion. Each symptom was given equal weightage on a specially designed score scale and the total score was calculated before and after drug treatment.

The patients were reviewed for 12 weeks and score evaluation was recorded at the end of each week and a complete clinical and hematological examination was done at the end of the 12th week. The predefined primary endpoints were reduction in the mean scores of dermal edema, pruritus, papules, vesicles, urticaria, tenderness, epidermal thickening, and pigmentation. The predefined secondary endpoints were incidences of short- and long-term adverse events and compliance to the drug treatment.

The mean score for dermal edema, pruritus, papules, vesicles, urticaria, tenderness, epidermal thickening, and pigmentation reduced significantly at the end of 12-week period. There were no clinically significant adverse events reported and observed during the entire study period. Therefore, it may be concluded that Talekt syrup is clinically safe and effective in the management of atopic dermatitis.

INTRODUCTION

Atopic dermatitis (AD) is a common, chronic inflammatory skin condition that frequently develops in infancy or early childhood. Epidemiologic studies have shown that AD affects between 10% and 20% of children and between 1% and 3% of adults. In 85% of cases, the first signs and symptoms of AD appear before age 5 years. Atopic dermatitis is characterized by episodic flares of pruritus, erythema, excoriation, and papulation that can be initiated by a variety of environmental and allergen triggers.

During the acute stage, serous or sanguineous ulcerations, vesicles and eczematous base are present. In the sub-acute stage, the skin is dry and eczematous without the presence of exudates. In the chronic stage of the disease, there is thickening of the corneous extract, scarification and lichenization.

Signs classified as major may also be present, such as xerosis, ichthyosis, accentuation of the palmar lines/creases, periauricular and perioral fissures, exfoliation of the scalp, white dermatographism, sudoresis, and stigmas such as infra- orbital Dennie-Morgan folds and Hertoghe sign. The diagnosis for atopic dermatitis is essentially clinical.

Talekt Syrup is a polyherbal formulation indicated for management of AD and it contains extracts of Azadirachta indica, Tinospora cordifolia, Embelia ribes, Eclipta alba, Andrographis paniculata, Curcuma longa, Cassia fistula, and Triphala. This study was planned to evaluate the efficacy and safety of Talekt syrup in atopic dermatitis.

Medicinal Officer to School of Tropical Medicine, Kolkata, India.
Dr. S.R. Prasad, M.D.,
Medical Advisor
Dr. S.K. Mitra, M.D.,
Executive Director
R&D Center, The Himalaya Drug Company, Bangalore - 562 123, India.

Specially contributed to “The Antiseptic” Vol 104 No 12 & P: 619 – 624

December 2007
THE ANTISEPTIC
619
PATIENTS AND METHODS

A total of 100 pediatric and adult patients, with clinical symptoms of atopic dermatitis, were included in the study.

Inclusion criteria

Clinically diagnosed patients of atopic dermatitis, who were refractory to conventional treatment and who were willing to give informed consent, were included in the study.

Exclusion criteria

Pregnant and lactating women, children below 3 years of age, patients with severe systemic illness, and patients with genetic disorders were excluded from the study.

Study procedure

At the initial visit, a detailed medical history, with special emphasis on family history of atopy, history of known contacts (irritants: cosmetics, perfumes and deodorants; clothing: synthetic, wool; rubber and plastic objects; clips, buttons, elastic, leather, plants; foods: egg, shellfish, citrus fruits; drugs: antibiotics, antiseptics, local anesthetics; metals: jewelry, prosthesis, beryllium; fluorescent light, wood, toys; and others: cement, chemicals, insecticides), and treatment history (drugs and impact of treatment) was obtained from all patients. Duration of symptoms (6 months/1 year), onset status (acute/gradual onset), recurrence, anatomical distribution (generalized/localized), initiation of lesion (papule/urticaria/pinpoint hemorrhage), pain (tenderness/numbness), and presence of any additional signs (blisters/pustules) was also noted.

The details of present episode was recorded in terms of onset (sudden, gradual and exacerbation of pre-existing lesions), progression of the lesion (progressive, recurrent or static), relieving factors (work absenteeism, home rest or any other), and seasonal exacerbation was recorded. In all patients, a thorough systemic examination was done, which was followed by a detailed local examination of the involved area. Local examination included details of the pattern of the lesion (localized, generalized, unilateral, bilateral, or photoexposed) and morphology of the lesion (epidermal thickening, pruritus, papules, vesicles, urticaria, tenderness, epidermal thickening, scaling, and pigmentation). Each symptom was given equal weightage on a specially designed score scale, and each score was rated from minimum score 0 to maximum score 10. The total score was calculated before and after drug treatment.

All adult patients were advised to consume Talekt syrup at a dose of 2 teaspoonful, twice daily, and pediatric patients were advised to consume Talekt syrup at a dose of 1 teaspoonful, twice daily, for a period of 12 weeks.

Follow-up and assessment

Patients were reviewed for 12 weeks and score evaluation was recorded at the end of every 2 weeks and a complete clinical and hematological examination was done at the start and end of the 12th week.

Adverse events

All adverse events, either reported or observed by patients, were recorded with information about severity, date of onset, duration, and action taken regarding the study drug. Relation of adverse events to study medication was predefined as “unrelated” (a reaction that does not follow a reasonable temporal sequence from the administration of the drug), “possible” (follows a known response pattern to the suspected drug, but could have been produced by the patient’s clinical state or other modes of therapy administered to the patient), and “probable” (follows a known response pattern to the suspected drug that could not be reasonably explained by the known characteristics of the patient’s clinical state).

Patients were allowed to voluntarily withdraw from the study, if they experienced serious discomfort during the study or sustained serious clinical events requiring specific treatment. For patients withdrawing from the study, efforts were made to ascertain the reason for dropout. Non-compliance (defined as failure to take less than 80% of the medication) was not regarded as treatment failure, and reasons for non-compliance were noted.

Primary and secondary endpoints

The predefined primary endpoints were reduction in the mean scores of dermal edema, pruritus, papules, vesicles, urticaria, tenderness, epidermal thickening, and pigmentation. The predefined secondary endpoints were incidences of short- and long-term adverse events and compliance to the drug treatment.

Statistical analysis

Statistical analysis was done according to intention-to-treat principles. Changes in various symptomatic parameters from baseline values and values after 2, 4, 6, 8, 10, and 12 weeks were analyzed by “Wilcoxon Sign Rank test”. Investigations done before and after treatment were analysed by Paired Student “t” test. The minimum level of significance was fixed at 95% confidence limit and a 2-sided p value of <0.05 was considered significant.

RESULTS

A total of 100 patients were enrolled in the study and 1 patient was lost to follow-up. The mean age of all patients was 20.95 years (SD = 11.95, range = from 3 to 60 years). There were 53 males and 47 females in the study. The mean duration of lesions was 8.79 months. Fifty nine patients had sudden onset of dermatitis and in 41 patients, the onset was gradual.

The mean total score reduced from 10.600 to 7.610, 4.635, 2.320, 0.980, 0.270, and 0.040 (p<0.0001) at the end of 2, 4, 6, 8, 10, and 12 week periods, respectively (Table 1 and Figure 1). The mean score for dermal edema reduced from 0.541 to 0.337, 0.133, 0.031, 0.010, 0, and 0 (p<0.0001) at the end of 2, 4, 6, 8, 10, and 12 week periods, respectively (Table 1 and Figure 2). The mean score for pruritus reduced from 3.253 to 2.520, 1.677, 0.934, 0.364, 0.091, and 0 (p<0.0001) at the end of 2, 4, 6, 8, 10, and 12 week periods, respectively (Table 1 and Figure 3). The mean score for papules reduced from 2.212 to 1.505, 0.854, 0.364, 0.081, 0.010, and 0 (p<0.0001) at the end of 2, 4, 6, 8, 10, and 12 week periods, respectively (Table 1 and Figure 4).
Table 1: Reduction in mean symptom score of clinical symptoms of atopic dermatitis with Talekt syrup treatment (Mean ± SEM)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Pre-treatment</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>10.600 ± 0.296</td>
<td>7.610*</td>
<td>4.635*</td>
<td>2.320*</td>
<td>0.980*</td>
<td>0.270*</td>
<td>0.040*</td>
</tr>
<tr>
<td>Dermal edema</td>
<td>0.541 ± 0.093</td>
<td>0.337*</td>
<td>0.133*</td>
<td>0.031*</td>
<td>0.010*</td>
<td>0.000*</td>
<td>0.000*</td>
</tr>
<tr>
<td>Pruritus</td>
<td>3.253 ± 0.154</td>
<td>2.520*</td>
<td>1.677*</td>
<td>0.934*</td>
<td>0.364*</td>
<td>0.091*</td>
<td>0.000*</td>
</tr>
<tr>
<td>Papules</td>
<td>2.212 ± 0.102</td>
<td>1.505*</td>
<td>0.854*</td>
<td>0.364*</td>
<td>0.081*</td>
<td>0.010*</td>
<td>0.000*</td>
</tr>
<tr>
<td>Vesicles</td>
<td>0.788 ± 0.105</td>
<td>0.475*</td>
<td>0.177*</td>
<td>0.080*</td>
<td>0.030*</td>
<td>0.040*</td>
<td>0.010*</td>
</tr>
<tr>
<td>Urticaria</td>
<td>2.798 ± 0.194</td>
<td>2.057*</td>
<td>1.338*</td>
<td>0.732*</td>
<td>0.383*</td>
<td>0.121*</td>
<td>0.030*</td>
</tr>
<tr>
<td>Tenderness</td>
<td>0.570 ± 0.097</td>
<td>0.291*</td>
<td>0.128*</td>
<td>0.035*</td>
<td>0.035*</td>
<td>0.000*</td>
<td>0.000*</td>
</tr>
<tr>
<td>Epidermal thickening</td>
<td>0.100 ± 0.048</td>
<td>0.500*</td>
<td>0.020*</td>
<td>0.000*</td>
<td>0.000*</td>
<td>0.000*</td>
<td>0.000*</td>
</tr>
<tr>
<td>Pigmentation</td>
<td>0.300 ± 0.022</td>
<td>0.230*</td>
<td>0.260*</td>
<td>0.170*</td>
<td>0.090*</td>
<td>0.010*</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

*p<0.0001 as compared to the pre-treatment value

Table 2: Reduction in levels of hematological values with Talekt syrup treatment (Mean ± SEM)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Before treatment</th>
<th>After treatment</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eosinophils (%)</td>
<td>7.265 ± 0.367</td>
<td>3.046 ± 0.127</td>
<td>p<0.0001; Significant</td>
</tr>
<tr>
<td>ESR (mm/hr)</td>
<td>30.78 ± 3.094</td>
<td>18.59 ± 2.844</td>
<td>p<0.0001; Significant</td>
</tr>
<tr>
<td>AEC (cells/mm³)</td>
<td>581.1 ± 25.79</td>
<td>239.2 ± 10.86</td>
<td>p<0.0001; Significant</td>
</tr>
</tbody>
</table>

The mean score for vesicles reduced from 0.788 to 0.475, 0.177, 0.080, 0.030, 0.040, and 0.010 (p<0.0001) at the end of 2, 4, 6, 8, 10, and 12 weeks periods, respectively (Table 1 and Figure 5). The mean score for urticaria reduced from 2.798 to 2.057, 1.338, 0.732, 0.383, 0.121, and 0.030 (p<0.0001) at the end of 2, 4, 6, 8, 10, and 12 weeks periods, respectively (Table 1 and Figure 6).

Similarly, the mean score for tenderness reduced from 0.570 to 0.291, 0.128, 0.035, 0.035, 0, and 0 (p<0.0001) at the end of 2, 4, 6, 8, 10, and 12 weeks periods, respectively (Table 1 and Figure 7). The mean score for epidermal thickening reduced from 1.00 to 0.500, 0.20, 0, 0, 0, and 0 (p<0.0001) at the end of 2, 4, 6, 8, 10, and 12 weeks periods, respectively (Table 1 and Figure 8). The mean score for pigmentation reduced from 0.300 to 0.230, 0.260, 0.170, 0.090, 0.010, and 0 at the end of 2, 4, 6, 8, 10, and 12 week period respectively (Table 1 and Figure 9).

The mean eosinophil percentage in differential count had significant reduction from the initial value of 7.265 ± 0.367 to 3.046 ± 0.127 after treatment. The mean erythrocyte sedimentation rate (ESR) value reduced significantly from 30.78 ± 3.094 to 18.59 ± 2.844 at the end of treatment. Similarly at the end of treatment, mean absolute eosinophil count (AEC) reduced significantly from 581.1 ± 25.79 to 239.2 ± 10.86 (Table 2 and Figure 10).

There were no clinically significant adverse events reported and observed during the entire study period.

DISCUSSION

Atopic dermatitis is a chronic inflammatory skin disease associated with cutaneous hyperreactivity to environmental triggers that are innocuous to normal nonatopic individuals. AD is characterized by abnormally increased IgE production. The allergen-induced ligation of IgE on the surface of mast cells induces the release of chemical mediators, such as leukotrienes, histamine or prostaglandins, and causes immediate hypersensitivity reaction, which is followed by a late phase inflammatory reaction involving T cells or eosinophils, leading to the development of atopic eczema.

The mainstay of therapy for AD, including mild to moderate disease, has been the liberal use of emollients and topical corticosteroids while avoiding allergens and other triggers for prevention of flares. Indeed, topical corticosteroids have been the cornerstone of treatment for AD for over 40 years.
Topical immunomodulators, antihistamines and antibiotics are also used for the treatment of AD, although severe cases may require systemic corticosteroids, phototherapy with ultraviolet light types A and B (UVA and UVB), and/or immunosuppressants. It is unfortunate that the adverse effects of stronger topical corticosteroids such as striae, atrophy and telangiectasia limit the long-term use of these agents. Moreover, there is a paucity of data to show that the long-term use of topical corticosteroids is without potential systemic effects, especially adverse effects on linear bone growth in children and hypothalamic-pituitary-adrenal axis suppression. When topical corticosteroids are applied to extensive body surface areas (BSAs), they can be absorbed systemically; systemic complications include Cushing’s syndrome, adrenal suppression, loss of bone density, hypertension, cataracts, and growth retardation in children11-14.

The results of the present study showed that there was a significant decrease in the mean score for dermal edema, pruritus, papules, vesicles, urticaria, tenderness, epidermal thickening, and pigmentation at the end of 12-week period. The mean ESR value, mean eosinophil percentage in differential count and mean absolute eosinophil count showed significant reduction after 12 weeks of therapy with Talekt syrup. There were no clinically significant adverse events reported and observed during the entire study period.

The beneficial actions of Talekt syrup might be due to the synergistic actions of its ingredients. *Azadirachta indica* has shown activity against various dermatophytes15. It also has antibacterial, antisecretory and antihemorrhagic activity16. Further it is known to act as an immunomodulating, antimetastatic and antioxidant substance17,18.

Tinospora cordifolia has demonstrated broad-spectrum effects on cytokines, autoimmune conditions and chronic degenerative processes19. It also has potent nitric oxide (NO) scavenging activity and regulates pathological conditions caused by excessive generation of NO and its oxidation product, peroxynitrite20. *Tinospora cordifolia* was also tested for its ability to modulate the changes occurring in the phagocytic activity of peritoneal macrophages after exposure of rats to either carbon tetrachloride or horse serum. It was found to normalize the phagocytic function irrespective to the direction of change, complying to the definition of an adaptogen21.
Emblica ribes has potent antibacterial, scavenging (of oxidizing free radicals), and significant wound healing activity.23-25. Sawant et al.25 have shown that both the ethanol extract as well as the total alkaloids of Eclipta alba produce good analgesic activity in all the different models of analgesia used. The immunomodulatory activity of Eclipta alba has also been demonstrated26.

Verma and Vinayak27 have shown that oral administration of Andrographis paniculata in different doses causes a significant elevation of catalase, superoxide dismutase and glutathione-S-transferase activities, which reveals its antioxidant action. Neoadrangoholide, one of the principal diterpene lactones, isolated from Andrographis paniculata, was tested to have anti-inflammatory activity.28 Treatment of Andrographis paniculata significantly elevated the production of interleukin-2 and interferon-gamma in a study done by Sheeja and Kuttan.29 Andrographis paniculata showed viridical activity and antimicrobial activity.30,31

Curcuminoids, a group of phenolic compounds isolated from the roots of Curcuma longa, have anti-inflammatory, antioxidant and antimicrobial activities.32 Curcumin has been demonstrated to be safe in six human trials and it exerts its anti-inflammatory activity by inhibition of a number of different molecules that play a role in inflammation.33 Hong et al.34 demonstrated that the active extract of Curcuma longa mediates COX-2 and INOS inhibitory activities.

Cassia fistula exhibited significant antimicrobial activity and properties that support folkloric use in the treatment of some diseases as broad-spectrum antimicrobial agents.35 Along with other activities, such as antitumor, antioxidant, hypoglycemic, hepatoprotective, antibacterial, hypcholesterolemic, and antiobiotic activities, the healing potential of Cassia fistula provides a scientific rationale for the traditional use of this plant in the management of infected dermal wound.36

The immunomodulatory activity of Triphala (Terminalia chebula, Terminalia bellirica and Emblica officinalis) has been demonstrated in a study done by Srikumar et al.37 Triphala has promising antioxidant and antiinflammatory activities.18,39, Kumar et al.40 showed the antibacterial, wound healing and antioxidant activities of Triphala on ointment, necessary for the management of infected wounds.

CONCLUSION

Atopic dermatitis is a commonly encountered syndrome in medical practice. Being a multifactorial syndrome complex, many therapeutic interventions have been studied. However, there is no clinically effective and safe medication that can be recommended in the management of AD. This study was conducted to evaluate the clinical efficacy and safety of Talcet syrup in AD.

This study observed a significant reduction in the mean score for dermal edema, pruritus, papules, vesicles, urticaria, tenderness, epidermal thickening, and pigmentation at the end of 12-week period. There were no clinically significant adverse events, either reported or observed, during the entire study period. Therefore, it may be concluded that Talcet syrup is clinically safe and effective in the management of atopic dermatitis.

REFERENCES